#In order to force a constant effective index, set the group index and effective index to the same value #In order to enter optical length simply set effective index/group index to '1' #The center frequency for the waveguide propagation properties f0 = 193.1e12; ng = 8.05894; neff = ng; FSR = 120e9; lambda = c / f0; #Parameters to generate #Optical Half-Band Filters #K. Jinguji and M. Oguma, "Optical Half-Band Filters" #J. Lightwave Technol. 18, 252- (2000) #The wavegude length deltal = c / FSR / ng; #From table III (page 258) #IIR elliptic half-band filter #circuit parameters (x*pi) teta1 = 0.25; teta2 = 0.25; teta11 = 0.2820; teta12 = 0.4456; #Phase shift multiplier phi = 0.0; phi11 = 1.0; phi12 = 1.0; #The wavegude length deltal11 = 2 * deltal; deltal12 = 2 * deltal; #constant phase shift #shift = 2 * pi * f0 / c * deltal * ( neff - ng ) #estimate neff from phase shift multiplier #effective index required to cause phin*pi phase shift: neff = phi * c / 2.0 / f0 / deltal + ng; neff11 = phi11 * c / 2.0 / f0 / deltal11 + ng; neff12 = phi12 * c / 2.0 / f0 / deltal12 + ng; #Coupling coefficients r1 = sin( teta1 * pi ) ^ 2; r2 = sin( teta2 * pi ) ^ 2; r11 = sin( teta11 * pi ) ^ 2; r12 = sin( teta12 * pi ) ^ 2; switchtodesign; setnamed("WC1","coupling coefficient 1",r1); setnamed("SBR11","frequency",f0); setnamed("SBR11","length",deltal11); setnamed("SBR11","group index 1",ng); setnamed("SBR11","effective index 1",neff11); setnamed("SBR11","coupling coefficient 1",r11); setnamed("SW","frequency",f0); setnamed("SW","length",deltal); setnamed("SW","group index 1",ng); setnamed("SW","effective index 1",neff); setnamed("SBR12","frequency",f0); setnamed("SBR12","length",deltal12); setnamed("SBR12","group index 1",ng); setnamed("SBR12","effective index 1",neff12); setnamed("SBR12","coupling coefficient 1",r12); setnamed("WC2","coupling coefficient 1",r2);